Contents

1 Overview 2

2 Program Objectives 2

3 How to Apply 2
 3.1 Domestic Students ... 2
 3.2 International Students .. 2
 3.3 Transfer Credit ... 3
 3.3.1 Students with a relevant master’s degree 3
 3.3.2 Students entering the program with graduate credit beyond the master’s degree 3

4 Admission Requirements 3
 4.1 Admission Criteria Variances ... 4
 4.2 Conditional and Provisional Admission 4

5 Degree Requirements 4
 5.1 Program Component Requirements .. 4
 5.2 Breadth Courses .. 5
 5.3 Program Variances and Constraints 6

6 Program Process and Milestones 8
 6.1 Program of Study ... 8
 6.2 Dissertation Committee Selection 8
 6.3 Program Qualification Exam .. 8
 6.4 Achieve Candidacy .. 9
 6.5 Progress Reviews ... 9
 6.6 Research Proposal Defense .. 9
 6.7 Seminar Presentation .. 9
 6.8 Journal Paper Submission ... 10
 6.9 Create the Dissertation ... 10
 6.10 Orally Defend the Dissertation .. 10
 6.11 Finalize the Dissertation Document 10
7 Graduate Curriculum Guide

7.1 Analog, Digital and Mixed-Mode VLSI

7.2 Electronics, Power Electronics and Electronic Devices

7.3 Intelligent Controls and Robotics

7.4 Signal and Image Processing

7.5 Wireless Communication Systems

7.6 RF & Microwave Materials, Devices and Systems
1 Overview

The Ph.D. is the highest degree awarded by Wright State University. This pinnacle academic credential signifies a mastery of a body of skills and knowledge in preparation for a career as an independent and productive scholar. Doctoral training involves working closely with faculty on significant technological challenges of importance and mutual interest.

2 Program Objectives

The program of study leading to the Doctoral Degree in Electrical Engineering is designed to achieve the following objectives:

• To enable students to engage in continued advanced study and research
• To foster original and scholarly research contributions to the various fields composing Electrical Engineering
• To instill in each student a proficiency for innovation manifesting a fundamental advancement of knowledge
• To enable graduates to integrate their education and experience with the larger problems of the technological professions

A student’s primary advisor, or Dissertation Director is a key factor to success in graduate studies. Members of the dissertation committee also play critical mentoring roles in a student’s academic progress. Each Ph.D. student is paired with a faculty advisor upon admission to the program. The faculty advisor will assist the student in developing the student’s program of study, selecting a Dissertation Committee, and scheduling all program milestones.

3 How to Apply

3.1 Domestic Students

To apply to the Ph.D. in Electrical Engineering Program, submit an online graduate application to the Graduate School.

3.2 International Students

Visit the International Gateway website for information on international applications and deadlines.
3.3 Transfer Credit

3.3.1 Students with a relevant master’s degree

Upon the recommendation of the student’s dissertation advisor and approval of the Ph.D. Program Director and the Graduate School, graduate courses completed at another accredited academic institution as part of a relevant M.S. degree may be transferred to a student’s graduate academic record and applied toward the requirements of the Ph.D. Degree in EE program at Wright State. No more than thirty semester hours may be applied against the Ph.D. Degree requirements.

3.3.2 Students entering the program with graduate credit beyond the master’s degree

If the credit to be transferred has not been applied toward an awarded degree, they may be used, with approval from the Ph.D. Program Director, to waive certain course requirements so long as the student was admitted and enrolled as a graduate student in good standing at the institution where the graduate credit beyond the M.S. degree was completed. Students who transfer to the Ph.D. in EE program and retain the same Dissertation Director must have their programs of study approved by the Ph.D. Program Director. Their programs of study, among other requirements, will specify any examinations which must be completed.

4 Admission Requirements

Program admissions will be based on a completed application of background information, submitted transcripts for undergraduate coursework and prior graduate coursework, GRE scores, 3 letters of recommendation, and a written statement of research interests and objectives. Students must first satisfy requirements for admission into the Wright State University Graduate School. Additionally, the student should be able to demonstrate a good understanding of electrical engineering fundamentals and have completed an M.S. degree to be considered for the program. Final admission decisions will be made by the Ph.D. Program Director based on the complete application package which must include documentation of:

- a B.S. in Electrical Engineering or a closely-related field, with a minimum GPA of 3.0
- an M.S. in Electrical Engineering or a closely-related field, with a minimum GPA 3.5 for all prior graduate coursework
- transcripts of all prior course work
- a written statement of research interests and objectives
- three Letters of Recommendation attesting to the student’s potential for independent research
- Graduate Record Examination (GRE) with a math score not lower than 155 and a composite score not lower than 300 and an AWA score not lower than 2.5.
- English proficiency scores (IELTS 6.0 or TOEFL 79 or PTE 57) for english as a second language students
4.1 Admission Criteria Variances

Students with M.S. degrees in (non-electrical) engineering fields will frequently begin graduate-level coursework without remediation. Students from other STEM fields (e.g., mathematics, physics, computer science) may be required to complete some remedial coursework before beginning graduate-level studies.

Prior work experience may improve an applicant’s chances for admission but will not be considered as a substitute for required academic credentials.

4.2 Conditional and Provisional Admission

A student may be admitted conditionally into the Ph.D. program. For example, conditional status may be granted to a student who’s record indicates curricular deficiencies or lack of demonstrated prerequisite proficiency. Upon satisfactory completion of the conditional requirements, within the time frame specified by the program, the student’s admission status will be changed to “regular.” Failure to satisfy all requirements in the specified time frame will result in dismissal from both the Ph.D. program and the Graduate School.

A student may be granted provisional admission in the Ph.D. doctoral program for a maximum of one semester for the purpose of granting a time variance for receipt of all application credentials. Granting provisional status does not imply or guarantee that the student will be granted admission into the program after all credentials have been received. Students admitted with provisional status must satisfy all admission requirements of the program within one semester.

5 Degree Requirements

5.1 Program Component Requirements

To fulfill the requirements for the Ph.D. in Electrical Engineering, a student must:

- Complete, by the end of the second semester, an approved Program of Study that contains at least 90 graduate semester credit hours beyond the bachelor’s (B.S.) degree in electrical engineering or an equivalent degree, and 60 graduate semester credit hours beyond a Master’s (M.S.) degree in electrical engineering or a related area.

- Complete at least three EE “breadth courses” with a minimum grade of ”B” in each course and any associated laboratory component. These courses must be numbered 7000-level or above entries from at least three distinct “areas” as specified in the listing below. This requirement may not be satisfied with any similar course taken at the undergraduate level.

- Complete 20 semester credit hours of courses in electrical engineering, or in an electrical engineering field, numbered 7000-level and above, and beyond those completed as part of the M.S. program. EE “breadth courses” may be used to partially satisfy this requirement.

- Complete at least 6 semester credit hours of graduate courses (numbered 6000-level and above) in mathematics (MTH) or statistics (STT).
• Complete a minimum of 30 semester credit hours of dissertation research with a grade of “P”.
• Pass the Program Qualification Exam. (see Section 6.3)
• Pass the Research Proposal Defense. (see Section 6.6)
• Present a seminar based on their dissertation research during an open meeting or a peer-reviewed, selective conference.
• Submit at least one manuscript to a peer-reviewed (IEEE quality) journal.
• Pass the oral Dissertation Defense and satisfactorily complete the written Dissertation Document, a student is required to submit a comprehensive written report on the new research findings, which must be approved by the dissertation committee. Furthermore, the student is required to give a public oral presentation to defend the findings in the written report to a Ph.D. dissertation committee comprised of subject matter experts in the field. (see Section 6.10)
• Obtain dissertation approval from the Dissertation Committee and the Graduate School, and successfully defend the dissertation before the Dissertation Committee.

5.2 Breadth Courses

The Ph.D. in Electrical Engineering courses that satisfy the “breadth” requirement include:

Analog, Digital and Mixed-Mode VLSI

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 7520/L</td>
<td>Low Power VLSI System Design & Lab</td>
</tr>
<tr>
<td>EE 7530/L</td>
<td>VLSI Design Synthesis & Optimization & Lab</td>
</tr>
<tr>
<td>EE 7540/L</td>
<td>VLSI Testing & Design for Testability & Lab</td>
</tr>
<tr>
<td>EE 7550</td>
<td>Trust Integrated Circuit Design</td>
</tr>
<tr>
<td>EE 7580/L</td>
<td>CMOS Mixed Signal IC Design & Lab</td>
</tr>
<tr>
<td>EE 7590/L</td>
<td>CMOS Radio Frequency Integrated Circuit Design & Lab</td>
</tr>
</tbody>
</table>

Electronics, Power Electronics and Electronic Devices

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 7410/L</td>
<td>Power Electronics I & Lab</td>
</tr>
<tr>
<td>EE 7420/L</td>
<td>Power Electronics II & Lab</td>
</tr>
<tr>
<td>EE 7430/L</td>
<td>HF Magnetic Components & Lab</td>
</tr>
<tr>
<td>EE 7440/L</td>
<td>RF Power Amplifiers & Lab</td>
</tr>
</tbody>
</table>

Intelligent Controls and Robotics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 7020</td>
<td>Modern Control I</td>
</tr>
<tr>
<td>EE 7200</td>
<td>Modern Control II</td>
</tr>
<tr>
<td>EE 7270</td>
<td>Adaptive Control</td>
</tr>
<tr>
<td>EE 7280</td>
<td>Intelligent Control</td>
</tr>
<tr>
<td>EE 7560/L</td>
<td>Advanced Robotics & Lab</td>
</tr>
</tbody>
</table>

Signal and Image Processing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 7150</td>
<td>Digital Image Processing</td>
</tr>
<tr>
<td>EE 7160</td>
<td>Multi sensor and Information Fusion</td>
</tr>
<tr>
<td>EE 7170</td>
<td>Target Tracking and Data Association</td>
</tr>
<tr>
<td>EE 7330</td>
<td>Modern Radar Theory</td>
</tr>
</tbody>
</table>
Wireless Communication Systems
EE 7350 Wireless Communication Techniques
EE 7360 Advanced Wireless Communication Techniques
EE 7400 Information Theory
EE 7610 Random Process
EE 7620 Detection Estimation & Optimal Filter Theory

RF & Microwave Materials, Devices and Systems
EE 7080 Advanced MEMS
EE 7460 Advanced Electromagnetics Engineering
EE 7470 Electromagnetic Simulation Methods
EE 7480 Advanced Microwave Engineering

5.3 Program Variances and Constraints

Program Variances

A. With the approval of the Ph.D. Program Director, students may use graduate (6000-level and above) courses in mathematics (MTH) or statistics (STT) appearing on the M.S. transcript or transfer-credit transcript to satisfy, in part or in whole, the “6 semester hours of graduate math or statistics” requirement. In this case, additional semester credit hours of coursework are required in the apportion of credit hours so applied.

B. Students originally enrolled in the Ph.D. in Engineering at Wright State University, who wish to transfer to the Ph.D. in Electrical Engineering Program may substitute “core courses” in the Engineering Program which were completed in Spring 2016 or earlier, for “breadth courses” required for the Ph.D. in Electrical Engineering Program. Note that this is a “full substitution” in that these courses may also be used to satisfy, in part, the requirement of 20 semester credit hours of EE 7000-level courses.

Program Constraints

Residence Students in the Ph.D. Program are considered to be in “residence” for any term for which they are registered for at least six semester hours of Wright State graduate courses. A minimum residence of two consecutive full-time academic semesters at Wright State University, devoted wholly to graduate work, is required by the University and hence by the program. (GS)

Independent Study No more than 3 semester credit hours of independent study (EE 7900) may be used to meet any program requirement. Further, independent study may not be used to satisfy either the “breadth courses” requirement or the “20 semester credit hours of EE 7000-level” requirement or the “6 semester hours of graduate math or statistics” requirement.

Prerequisite Material If deemed necessary by the Ph.D. Program Director, students will be required to successfully complete any prerequisite material at the undergraduate level. These courses can not be used to satisfy any of Ph.D. degree requirements.
Time Limit Students must complete all degree requirements within 10 years from the date the student matriculated into the program. Courses older than ten years on the students’ programs of study can not be used to satisfy program requirements. (GS)

Academic Standards

GPA All students are required to maintain a minimum cumulative grade point average of 3.0. A cumulative average of 3.0 is required for graduation. (GS)

C grades The grade of "C" is a minimum passing grade for graduate credit; although up to six semester hours of courses with a grade of "C" may be applied toward certain requirements of the program unless otherwise restricted. (GS)

First-year Review At the end of one year or 16 semester hours, each student will be evaluated as to academic progress by the Ph.D. Program Director. On the basis of this evaluation, and after review by the Graduate School, the student will be either: Recommended for continuation in the graduate program, Placed on probationary status, or Dismissed from the Program and the Graduate School. (GS)

Probation After completing 16 semester hours of course work in the Program, students will automatically be placed in probationary status if their cumulative GPA drops below a 3.0. Students must achieve a cumulative GPA of at least 3.0 the semester they complete nine hours of course work subsequent to being placed on probation. Failure to meet this condition could result in their dismissal from the Graduate School. Students achieving a cumulative GPA of at least 3.0 prior to or during the semester that nine hours have been completed will be cleared of probationary status. (GS)

Internships & CPT Candidates are eligible to engage in internship or co-op opportunities. One credit of internship-related Independent Study (EE 7900) may be counted toward the total credits for the degree. Additional semesters of internship may be registered, but not applied to satisfy degree requirements. International students must register the internship with the Brandeberry Career Development Center, register for 1 credit of independent study, and seek approval from the department for UCIE Departmental Certification. Domestic students are encouraged to register with Brandeberry Career Center and for Independent Study to receive 1 hour of credit toward the total credits. All students registered for credit bearing internships are required to submit a report detailing the learning objectives expected and the outcome of the experience.
6 Program Process and Milestones

6.1 Program of Study

By the end of the second semester, the student must complete an approved Program of Study meeting all program requirements.

6.2 Dissertation Committee Selection

A Dissertation Committee will be formed at the suggestion of the Dissertation Director with approval of the Ph.D. Program Director. The Ph.D. Program Director, in consultation with the Dissertation Director will submit the proposed Committee to the Dean of the Graduate School. The Dean of the Graduate School will formally approve the nominees to the committee.

The committee will consist of at least five regular or adjunct members of the graduate faculty, including the Dissertation Director, with at least three of these having a primary tenure-track faculty appointment in the department of Electrical Engineering. The Dissertation Director, who chairs the committee, must be a regular member of the graduate faculty, a member of the Ph.D. in Electrical Engineering program faculty, and dissertation-qualified.

Co-Director Adjunct members of the graduate faculty who are dissertation-qualified may be eligible to co-direct a dissertation along with a Ph.D. in Electrical Engineering dissertation-qualified member and will be selected and nominated in accordance with the Ph.D. Program Policies. Students who transfer to the Ph.D. Program may retain the same Dissertation Director if they satisfy the above criteria. Committee members who continue from the students previous institution are considered to possess adjunct status while the student continues in the Ph.D. in EE Program.

In consideration of the extensive Agreements which established the Dayton Area Graduate Studies Institute in 1994, Wright State recognizes regular faculty members in engineering and computer science at the other four original DAGSI institutions (Air Force Institute of Technology, University of Dayton, the Ohio State University, and University of Cincinnati) as possessing á priori the equivalent of adjunct graduate status.

6.3 Program Qualification Exam

Upon completion of the coursework students are required to pass a Qualifying Examination where problem solving and independent research comprehension skills are thoroughly examined by a Dissertation Committee comprised of subject matter experts. All students in the program are expected to take and pass the qualifying examination before they will be admitted into “candidacy” status. The purpose of the qualifying examination is to determine if a student has acquired and is able to apply fundamental knowledge and acumen in the program area. The examination typically contains both written and oral components. The qualifying examination consists of:

- A written one-week-duration take-home exam composed by committee containing open-ended problems and paper reviews
- An oral, two-hour examination loosely centered around the written examination
Students will normally take the examination after they have completed the both the “breadth courses” and the Electrical Engineering courses satisfying program requirements in their Program of Study. Failure to pass the qualifying examination may result in dismissal from the program regardless of performance in other aspects of the program. Depending on the Dissertation Committee’s recommendation, a student failing the examination may repeat it once. If necessary, students are expected to repeat the examination in a timely manner. Passing the examination is necessary for, but does not guarantee a student’s admission into candidacy. The program may establish additional criteria to determine a students eligibility for candidacy.

Students will be provided written notification of the results of the examination and of any actions to be taken within ten days of having taken the examination. The Ph.D. Program Director will notify, in writing, the Graduate School of the administration and results of the qualifying examination and the actions to be taken for those students who have failed to pass the examination. If dismissal action is to be taken, the Graduate School will formally notify the student by letter.

6.4 Achieve Candidacy

Acceptance into candidacy in the Ph.D. Program indicates that students have the potential to undertake work on the dissertation and to successfully complete all other requirements of the program. Students achieve candidacy by passing the qualifying examination and by obtaining approval of their dissertation topic from their Dissertation Committee. Students may petition for an extension to the candidacy term. (GS) Candidacy is valid for five years. The program can, however, terminate candidacy for unsatisfactory progress. Students may petition for an extension to the candidacy term.

6.5 Progress Reviews

Upon achieving candidacy, the student will provide formal progress reports to the Dissertation Committee at regular intervals not to exceed six-months, until the dissertation is successfully defended. It is the Dissertation Director’s responsibility to convene the meetings and report a summary consensus of progress, along with a consensus projection of program completion to the Ph.D. Program Director.

6.6 Research Proposal Defense

Upon passing the qualifying examination and achieving candidacy, a student is required to survey the literature and demonstrate mastery of the current state of the art in the student’s intended area of research. Based on this study, the student is required to independently develop a research plan that proposes an original and significant contribution expanding state of art knowledge in a specific research area. The innovation and importance in the research proposal is reviewed, examined and approved by subject matter experts in the Dissertation Committee.

6.7 Seminar Presentation

Present a seminar based on dissertation research during an open meeting or conference.
6.8 Journal Paper Submission

Submit at least one manuscript to a peer-reviewed (IEEE quality) journal.

6.9 Create the Dissertation

The dissertation is an original, significant contribution to scholarly, technical, or scientific knowledge in a specialized area. The dissertation must provide convincing evidence of the highest level of mastery in the techniques of research and a thorough understanding and application of the subject matter.

Students must complete the dissertation within the time frame established for candidacy. All course work associated with the dissertation must earn a grade of “P” in order to qualify the student for graduation; all grades for dissertation work will be given in each semester for which dissertation credit is awarded. The dissertation must be written in Standard American English.

6.10 Orally Defend the Dissertation

Each candidate is required to give an oral presentation to defend the findings in the written report to the Ph.D. Dissertation Committee. The final dissertation defense will normally be open to the public. The Dissertation Committee may also elect to privately question the candidate following the public presentation. The Ph.D. Program Committee will establish the procedures for the defense of the dissertation. The dissertation must be approved by at least three (3) members of the Dissertation Committee.

6.11 Finalize the Dissertation Document

Candidates are required to submit an edited dissertation document incorporating all changes approved by the Dissertation Committee.

6.12 Disseminate the Dissertation

A computer file containing an approved dissertation, in pdf format, must be transmitted to OhioLINK and to the Ph.D. Program Director - not later than 30 days after the end of the semester in which the degree will be granted (due dates are published by the Graduate School and distributed to the doctoral program offices). Instructions for submitting the student dissertation are on the OhioLINK Web site.

OhioLINK is the repository for Electronic Theses and Dissertations (ETDs) for the state universities system in Ohio. This final copy should follow the form prescribed in the Graduate Thesis/Dissertation Handbook, available at the Graduate School Web site and should be carefully produced, free of errors in style, mechanics, and format. The pdf file must include the typed dissertation approval page, but without signatures.

One (1) paper copy of the typed dissertation approval page, with signatures, must be submitted to the Graduate School and to the Ph.D. Program Director for filing. The ETD cannot be approved
until the Graduate School receives the paper copy of the signed dissertation approval page. Please consult the Graduate Thesis/Dissertation Handbook for additional information and details about preparing the student ETD.

7 Graduate Curriculum Guide

The following listings of graduate courses representing area concentrations within Electrical Engineering are intended to guide students and their advisors in developing and completing a program of study:

7.1 Analog, Digital and Mixed-Mode VLSI

Essential
- EE 6540/L VLSI Design & Lab
- EE 6620/L Digital Integrated Circuit Design & Lab
- EE 7520/L Low Power VLSI System Design & Lab
- EE 7530/L VLSI Design Synthesis & Optimization & Lab
- EE 7550 Trust Integrated Circuit Design
- EE 7580/L CMOS Mixed Signal IC Design & Lab

Recommended
- EE 7550 Trust Integrated Circuit Design
- EE 7540/L VLSI Testing & Design for Testability & Lab
- EE 7590/L CMOS Radio Frequency Integrated Circuit Design & Lab
- MTH 6070 (3) Optimization Techniques (CS 6270)
- MTH 6570 (4) Combinatorics and Graph Theory (CS 6280)

7.2 Electronics, Power Electronics and Electronic Devices

Essential
- EE 6440/L Electronic and Linear Integrated Systems & Lab
- EE 7410/L Power Electronics I & Lab
- EE 7420/L Power Electronics II & Lab
- EE 7430/L HF Magnetic Components & Lab
- EE 7440/L RF Power Amplifiers & Lab

Recommended
EE 6130/L Continuous Control System & Lab
EE 6170/L Digital Control Systems & Lab
EE 7010 Applied Linear Techniques
EE 7580/L CMOS Mixed Signal IC Design & Lab
EE 7590/L CMOS Radio Frequency Integrated Circuit Design & Lab
MTH 6050 (3) Advanced Engineering Mathematics
MTH 6060 (3) Mathematical Modeling
MTH 6070 (3) Optimization Techniques (CS 6270)
MTH 6260 (3) Matrix Computations (CEG 6260)
STT 6460 (4) Statistical Methods for Engineers

7.3 Intelligent Controls and Robotics

Essential
EE 6120/L Industrial Controls and Automation & Lab
EE 6130/L Continuous Control System & Lab
EE 6170/L Digital Control Systems & Lab
EE 6190/L Intro Intelligent Control Systems & Lab
EE 6560/L Introduction to Robotics & Lab
EE 7020 Modern Control I
EE 7200 Modern Control II
EE 7270 Adaptive Control
EE 7280 Intelligent Control

Recommended
EE 6600/L Autonomous UAV Flight Control & Lab
EE 7560/L Advanced Robotics & Lab
MTH 6050 (3) Advanced Engineering Mathematics
MTH 6060 (3) Mathematical Modeling
MTH 6070 (3) Optimization Techniques (CS 6270)
MTH 6260 (3) Matrix Computations (CEG 6260)
MTH 6550 (3) Advanced Linear Algebra

7.4 Signal and Image Processing

Essential
EE 6000 Linear Systems II
EE 6360 Digital Signal Processing
EE 7150 Digital Image Processing
EE 7160 Multi sensor and Information Fusion
EE 7610 Random Process
EE 7620 Detection Estimation & Optimal Filter Theory

Recommended
EE 6840 Introduction to Machine Learning
EE 7010 Applied Linear Techniques
EE 7170 Target Tracking and Data Association
EE 7330 Modern Radar Theory
EE 7350 Wireless Communication Techniques
EE 7400 Information Theory
MTH 6260 (3) Matrix Computations (CEG 6260)
MTH 6550 (3) Advanced Linear Algebra
STT 6110 (3) Applied Time Series
STT 7020 (3) Applied Stochastic Processes
STT 7440 (3) Applied Multivariate Analysis

7.5 Wireless Communication Systems

Essential
EE 6000 Linear Systems II
EE 6210/L Digital Communication & Lab
EE 6730/L Wireless Communication & Lab
EE 7350 Wireless Communication Techniques
EE 7360 Advanced Wireless Communication Techniques
EE 7400 Information Theory
EE 7610 Random Process
EE 7620 Detection Estimation & Optimal Filter Theory

Recommended
EE 6360 Digital Signal Processing
EE 6750 Introduction to Radar Systems
EE 6840 Introduction to Machine Learning
EE 7010 Applied Linear Techniques
EE 7330 Modern Radar Theory
MTH 6240 (3) Coding Theory (CS 6240)
MTH 6260 (3) Matrix Computations (CEG 6260)
MTH 6290 (3) Cryptography and Data Security (CS 6290)
MTH 6550 (3) Advanced Linear Algebra
MTH 6570 (4) Combinatorics and Graph Theory (CS 6280)
STT 6110 (3) Applied Time Series
STT 7020 (3) Applied Stochastic Processes
7.6 RF & Microwave Materials, Devices and Systems

| Essential | | |
|-----------|---------------------------------|
| EE 6100 | Nano-fabrication of Integrated Solid State Devices |
| EE 6420/L | Microwave Engineering I - Passive Components & Lab |
| EE 6460/L | Microwave Engineering II - Active Components and Circuits & Lab |
| EE 6470/L | Antenna Theory and Design & Lab |
| EE 6700/L | Introduction to MEMS |
| EE 7460 | Advanced Electromagnetics Engineering |

| Recommended | | |
|-------------|---------------------------------|
| EE 6400/L | Introduction to Nanoscience and Nanotechnology & Lab |
| EE 7080 | Advanced MEMS |
| EE 7430/L | HF Magnetic Components & Lab |
| EE 7440/L | RF Power Amplifiers & Lab |
| EE 7470 | Electromagnetic Simulation Methods |
| EE 7480 | Advanced Microwave Engineering |
| MTH 6050 (3) | Advanced Engineering Mathematics |
| MTH 6060 (3) | Mathematical Modeling |