
The Derivative

The derivative dy/dt of a function y(t) is the slope of the tangent line to that function at time t:

Derivatives of some common functions in engineering:

Function, <i>y</i> (<i>t</i>)	Derivative, <i>dy/dt</i>	
$sin(\omega t)$	$\omega cos(\omega t)$	
$cos(\omega t)$	$-\omega sin(\omega t)$	
e^{st}	se^{st}	
t^n	nt^{n-1}	
cy(t)	cdy/dt	
$y_1(t)+y_2(t)$	$dy_1/dt + dy_2/dt$	

In the above table, ω , s, n and c are constants (not functions of t).

REFERENCE PAGES

. . .

DIFFERENTIATION RULES .

GENERAL FORMULAS

1. $\frac{d}{dx}(c) = 0$ 3. $\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$ 5. $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$ (Product Rule) 7. $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$ (Chain Rule)

2.
$$\frac{d}{dx} [cf(x)] = cf'(x)$$

4.
$$\frac{d}{dx} [f(x) - g(x)] = f'(x) - g'(x)$$

6.
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2} \quad (\text{Quotient Rule})$$

8.
$$\frac{d}{dx} (x^n) = nx^{n-1} \quad (\text{Power Rule})$$

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

9.
$$\frac{d}{dx}(e^x) = e^x$$

10. $\frac{d}{dx}(a^x) = a^x \ln a$
11. $\frac{d}{dx}\ln|x| = \frac{1}{x}$
12. $\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$

TRIGONOMETRIC FUNCTIONS

13. $\frac{d}{dx}(\sin x) = \cos x$	$14. \ \frac{d}{dx}(\cos x) = -\sin x$	15. $\frac{d}{dx}(\tan x) = \sec^2 x$
$16. \ \frac{d}{dx} (\csc x) = -\csc x \ \cot x$	17. $\frac{d}{dx}(\sec x) = \sec x \tan x$	$18. \ \frac{d}{dx} \left(\cot x \right) = -\csc^2 x$

INVERSE TRIGONOMETRIC FUNCTIONS

19.
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

20. $\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$
22. $\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2-1}}$
23. $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}}$

21.
$$\frac{d}{dx} (\tan^{-1}x) = \frac{1}{1+x^2}$$

24. $\frac{d}{dx} (\cot^{-1}x) = -\frac{1}{1+x^2}$

HYPERBOLIC FUNCTIONS

25. $\frac{d}{dx} (\sinh x) = \cosh x$ 28. $\frac{d}{dx} (\operatorname{csch} x) = -\operatorname{csch} x \operatorname{coth} x$

26.
$$\frac{d}{dx}(\cosh x) = \sinh x$$

29. $\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$

INVERSE HYPERBOLIC FUNCTIONS

31.
$$\frac{d}{dx} (\sinh^{-1}x) = \frac{1}{\sqrt{1 + x^2}}$$

34. $\frac{d}{dx} (\operatorname{csch}^{-1}x) = -\frac{1}{|x|\sqrt{x^2 + 1}}$

32.
$$\frac{d}{dx} (\cosh^{-1}x) = \frac{1}{\sqrt{x^2 - 1}}$$

35. $\frac{d}{dx} (\operatorname{sech}^{-1}x) = -\frac{1}{x\sqrt{1 - x^2}}$

27.
$$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$$

30. $\frac{d}{dx}(\coth x) = -\operatorname{csch}^2 x$

33.
$$\frac{d}{dx} (\tanh^{-1}x) = \frac{1}{1 - x^2}$$

36. $\frac{d}{dx} (\coth^{-1}x) = \frac{1}{1 - x^2}$

3