IHE 7050 - Design and Analysis of Engineering Experiments

Course Description

Introduction to planning and analysis of engineering experiments. Topics include basic statistics review, linear models, regression, analysis of variance, experiment designs, response surface methods, and engineering applications.

Offered both face-to-face and online Graduate level – 3 credit hours

Course Learning Objectives

Students enrolled in this course will learn to:

- Understand how to design experiments, carry them out, and analyze the data they yield.
- Understand the process of designing an experiment, including appropriately defining factors and responses.
- Understand the essential assumptions for statistical techniques and how to verify them.
- Be able to effectively utilize factorial and fractional factorial designs.
- Use factorial designs for cost reduction, increasing efficiency of experimentation, and revealing the essential nature of a process.
- Investigate the logic of hypothesis testing, including analysis of variance and the detailed analysis of experimental data.
- Learn the technique of regression analysis, and how it compares and contrasts with other techniques studied in the course.
- Understand the role of response surface methodology and its basic underpinnings.
- Understand how to analyze experimental design data using the most common software packages and be able to draw appropriate conclusions in an engineering context.

Course Learning Outcomes

Upon successful completion of this course, a student will:

- Understand how to design experiments, carry them out, and analyze the data they yield.
- Understand the process of designing an experiment, including appropriately defining factors and responses.
- Understand the essential assumptions for statistical techniques and how to verify them.
- Be able to effectively utilize factorial and fractional factorial designs.

- Use factorial designs for cost reduction, increasing efficiency of experimentation, and revealing the essential nature of a process.
- Investigate the logic of hypothesis testing, including analysis of variance and the detailed analysis of experimental data.
- Learn the technique of regression analysis, and how it compares and contrasts with other techniques studied in the course.
- Understand the role of response surface methodology and its basic underpinnings.
- Understand how to analyze experimental design data using the most common software packages and be able to draw appropriate conclusions in an engineering context.

Tentative Weekly Schedule

Week 1	Introduction
	Probability Concept Review: Random Variables
Week 2	Review: Statistical Inference for a Single System
	Review: Statistical Inference for Comparison of Systems
Week 3	Analysis of Variance: Single Factor Experiments
	Analysis of Variance: Statistical Significance, Residual Analysis
Week 4	Analysis of Variance: Transformations to Improve Model Adequacy
	Analysis of Variance: Comparison of Means
Week 5	Pre- Exam Review
	EXAM 1
Week 6	Post-Exam Solutions Review
	Randomized Complete Block Design
Week 7	Latin Square Designs
	Balanced Incomplete Block Designs
Week 8	Factorial Designs: 2 Factors, Multiple Factors
	2 ^k Factorial Designs
Week 9	Factorial Designs: Single Replicate of the 2 ^k Design
	Factorial Designs: Blocks and Confounding the 2 ^k Design
Week 10	Pre-Exam Review
	EXAM II
Week 11	Post-Exam Solutions Review
	Fitting Regression Models to Experimental Data
Week 12	Fitting Regression Models to Experimental Data
	Center Point in the 2^{K} Design
Week 13	Factorial Designs: Fractions of the 2 ^k Design

Factorial Designs: Resolution in Fractional Designs

- Week 14 Interpreting Regression & Coded Variables in JMP Response Surface Methods
- Week 15 Final Exam