IHE 7712 – Advanced Model-Based Approaches for Systems Analysis

Course Description
Introduction into the use of advanced model-based computer simulations for analysis of various industrial engineering-related analyses. Topics include three basic types of simulation: Systems Dynamics, Discrete Event, and Agent-Based, with the emphasis on the last. The course will outline the basic steps of a simulation-based analysis, beginning with the formulation of an appropriate problem statement, developing use cases/scenario vignettes, adapting a simulation to instantiate those cases, defining and implementing a simulation experimental design. The course will be heavily hands-on; students will learn by performing their own simulation-based analysis project.

Offered both face-to-face and online
Graduate level – 3 credit hours

Course Learning Objectives
Students enrolled in this course will learn to:

• Understand and implement the three basic simulation methodologies
• Understand and implement multi-modal methodologies
• Understand and apply the principles and procedures of simulation-based analysis
• Identify and formulate a problem for simulation-based analysis
• Identify and formulate appropriate use cases/scenario vignettes
• Identify and document critical assumptions, constraints, factors, and factor interactions
• Develop an appropriate mathematical model
• Implement that model by adapting/developing an appropriate simulation using the software platform and example models provided
• Develop and execute an appropriate simulation design of experiments for that problem
• Analyze the results, develop appropriate conclusions and recommendations
• Clearly and concisely present the model, simulation design, and the insights obtained from the analysis

Course Learning Outcomes
Upon successful completion of this course, students can:

• Understand and implement the three basic simulation methodologies
• Understand and implement multi-modal methodologies
• Understand and apply the principles and procedures of simulation-based analysis
• Identify and formulate a problem for simulation-based analysis
• Identify and formulate appropriate use cases/scenario vignettes
- Identify and document critical assumptions, constraints, factors, and factor interactions
- Develop an appropriate mathematical model
- Implement that model by adapting/developing an appropriate simulation using the software platform and example models provided
- Develop and execute an appropriate simulation design of experiments for that problem
- Analyze the results, develop appropriate conclusions and recommendations
- Clearly and concisely present the model, simulation design, and the insights obtained from the analysis

Tentative Weekly Schedule

Week 1
- Introduction to Simulation-Based Analysis
- Introduction to Anylogic

Week 2
- Sim Modeling Methods
- Sim Modeling Methods

Week 3
- Systems Models and Simulation Modeling
- Discrete Event Simulation

Week 4
- Modeling Complex Systems
- Discrete Event Modeling and the Enterprise Library

Week 5
- Systems Dynamics Modeling
- Stocks and Flows, Eqn.s
- Systems Dynamics Modeling
- Example Models

Week 6
- Agent Based Modeling
- Agent Basics
- Agent Based Modeling
- Networks & Communications

Week 7
- Agent-Based Modeling
- Example Project
- Exam 1

Week 8
- Introduction to State Charts
- State Chart Elements
- Introduction to State Charts
- Transitions

Week 9
- Events
- Java: Classes, Variables, Functions

Week 10
- Java: Expressions, Statements, Collections
- Any logic
- Presentation and Animation

Week 11
- Project Reviews
- Design of Simulation Experiments

Week 12
- Randomness in AnyLogic
- Any logic Data Input/Output

Week 13
- Exam 2
- Verification and Validation

Week 14
- Project Reviews
- Project Reviews

Week 15
- Final Exam