Contents

1 Purpose ... 1

2 Department of Electrical Engineering... 1
 2.1 Programs .. 1
 2.2 Points of Contact .. 1
 2.3 Faculty .. 1

3 M.S.E.E... 4
 3.1 Admission .. 4
 3.1.1 Application Process for US Citizens and US Permanent Residents 4
 3.1.2 Requirements ... 4
 3.1.3 Application Process for International Applicants ... 4
 3.1.4 GRE Requirement ... 5
 3.1.5 Academic Deficiency ... 5
 3.1.6 Waivers ... 5
 3.2 Degree Requirements .. 5
 3.3 Graduation ... 6
 3.4 Course Numbering .. 7
 3.5 Frequently Asked Questions .. 7

4 Financial Support .. 8
 4.1 Graduate Research Assistantships (GRAs) ... 8
 4.2 Graduate Teaching Assistantships (GTAs) ... 8
 4.3 Co-operative Education .. 8
 4.4 Hourly Employment .. 8
1 Purpose

The Department of Electrical Engineering offers a program of study leading to a Master of Science in Electrical Engineering. The program permits concentration of study in specific areas of electrical engineering such as signal processing, wireless communications, control theory, microwave, power electronics, and integrated circuits. Most graduate courses are offered after 4:00 p.m. or online to serve the educational needs of the practicing engineering professional as well as the full-time student. This document addresses questions that frequently arise in the advising process.

2 Department of Electrical Engineering

2.1 Programs

The Department of Electrical Engineering is one of four departments in the College of Engineering and Computer Science. The Department offers four degree programs; an ABET-accredited Bachelor of Science in Electrical Engineering, a Master of Science in Electrical Engineering, a combined B.S./M.S. in Electrical Engineering and Doctorate of Philosophy in Electrical Engineering. Further information about those programs can be found in respective handbooks published by the department.

2.2 Points of Contact

The EE Graduate Program Director and student advisors can be reached through the department office:
Department of Electrical Engineering
311 Russ Engineering Center
Wright State University
Dayton, OH 45435
ph. 937-775-5037
fax 937-775-3936
wright.edu/ee

2.3 Faculty

The department is currently staffed by twenty-four faculty members, with summary information listed below.

- **Joshua Ash** (937-775-3983, josh.ash@wright.edu, 425 Russ Center), Assistant Professor, Ph.D., The Ohio State University, 2007. Research interests include: statistical signal processing and large-scale Bayesian inference with applications in sensor and image processing, hyperspectral imaging, and synthetic aperture radar.

- **Elliott Brown** (joint appointment with Physics) (937-775-4903, elliott.brown@wright.edu, 223 NEC), Professor, Ph.D., California Institute of Technology, 1985. Research interests include: mm-wave and THz mixers made from semiconductor hot-electron bolometers and magnetically-quantized photoconductors.
- **Henry Chen** (937-775-5056, henry.chen@wright.edu, 325 Russ Center), Professor, Ph.D., University of Minnesota, 1989. Research interests include: VLSI/FPGA/GPU based on demand targeted to CMOS nanotechnologies which includes digital, analog and mixed-signal integrated circuits for signal processing, communication, radar and ultra wideband receivers.

- **John (Marty) Emmert** (937-775-5023, marty.emmert@wright.edu, 338 Russ Center), Professor, Ph.D., University of Cincinnati, 1999. Research interests include: integrated circuit (IC) design; security and trust, fault tolerance, and design automation for IC systems; dynamically reconfigurable systems; VLSI; FPGA; GPU; VHDL; and verilog.

- Zachariah Fuchs (937-775-4464, zachariah.fuchs@wright.edu, 244 Russ Center) Assistant Professor, Ph.D., University of Florida, 2012. Research interests include: game-theoretic control in adversarial environments, cooperative control, optimal control, deception modeling, robotics and autonomous systems.

- **Fred Garber** (937-775-5033, fred.garber@wright.edu, 312 Russ Center), Professor, Ph.D., University of Illinois, 1983. Research interests include: communication systems, target recognition, information theory, and pattern theory.

- **Steve Gorman** (937-775-5783, steve.gorman@wright.edu, 329 Russ Center), Instructor, Ph.D., University of Kentucky, 1988. Research interest include: signal and communication processing related to geolocation of modern signal transmitters including cellular and PC devices.

- **Lang Hong** (937-775-5053, lang.hong@wright.edu, 442 Russ Center), Professor, Ph.D., University of Tennessee, 1989. Research interests include: computer vision, image processing and pattern recognition, robotic sensing and control, multisensor systems, stochastic systems, system modeling and estimation, and multitarget tracking.

- **Marian Kazimierczuk** (937-775-5059, marian.kazimierczuk@wright.edu, 418 Russ Center), Professor, Ph.D., Technical University of Warsaw, 1978. Research interests include: electronic circuit analysis, high-frequency tuned power amplifiers, power electronics, dc-dc PWM and resonant power converters, modeling and control of power converters, magnetic components, and renewable energy sources.

- **Pradeep Misra** (937-775-5062, pradeep.misra@wright.edu, 424 Russ Center), Associate Professor, Ph.D., Concordia University, 1987. Research interests include: multivariable control theory, robotics and applied numerical analysis.

- Luther Palmer (937-775-3984, luther.palmer@wright.edu, 242 Russ Center) Assistant Professor, Ph.D., The Ohio State University, 2007. Research interests include: biologically-inspired robotics and algorithms, walking machines, intelligent search and optimization.

- **Doug Petkie** (joint appointment with Physics) (937-775-3124, doug.petkie@wright.edu, 243 Fawcett Hall), Associate Professor, Ph.D., The Ohio State University, 1996. Research interests: spectroscopy of atmospheric and interstellar related molecules, microwave, mm-wave, and THz sensing and imaging.

- **Teri Piatt** (937-775-2757, teri.piatt@wright.edu, 415 Russ Center), Lecturer, Ph.D.,
University of Colorado, 1999. Research interests include: technical communications, circuits, linear systems, and control systems.

- **Kulip Rattan** (937-775-5052, kulip.rattan@wright.edu, 108 Russ Center), Professor Emeritus, Ph.D., University of Kentucky, 1975. Research interests include: control theory, robotics, verification and validation of cyber-physical systems (CPS).

- **Saiyu Ren** (937-775-5051, saiyu.ren@wright.edu, 328 Russ Center), Associate Professor, Ph.D., Wright State University, 2008. Research interests include: RF and mixed signal integrated circuit design with applications to wireless transceivers, communications and signal processing.

- **Brian Rigling** (937-775-5100, brian.rigling@wright.edu, 311 Russ Center), Professor and Chair, Ph.D., The Ohio State University, 2003. Research interests include: sensor signal and image processing, system engineering and modeling.

- **Michael A. Saville** (937-775-5169, michael.saville@wright.edu, 422 Russ Center), Assistant Professor, Ph.D., P.E., University of Illinois at Urbana-Champaign, Illinois, 2006. Research interests include: Computational and applied electromagnetics; radar measurement and physics-based modeling of sensor signal processing.

- **Arna Shaw** (937-775-5064, arna.shaw@wright.edu, 427 Russ Center), Professor, Ph.D., University of Rhode Island, 1987. Research interests include: sensor signal and image processing, automatic target recognition, hyperspectral image processing, high resolution angles of arrival estimation, and vibrometry based target recognition.

- **Raymond Siferd** (937-775-5058, ray.siferd@wright.edu, 324 Russ Center), Professor Emeritus, Ph.D., Air Force Institute of Technology, 1977. Research interests include: very large scale integrated circuit design, signal processing and analog integrated circuit design.

- **Zhiquang (John) Wu** (937-775-5060, zhiquiang.wu@wright.edu, 481 Joshi Center), Professor, Ph.D., Colorado State University, 2002. Research interests include: wireless communication and networking, cognitive radio and dynamic spectrum access, cognitive RF, multi-carrier transmission, underwater acoustic communication.

- **Jiafeng Xie** (937-775-5161, jiafeng.xie@wright.edu, 230 Russ Center), Assistant Professor, Ph.D., University of Pittsburgh, 2014. Research interests include: VLSI cryptographic systems, VLSI signal/image processing systems.

- **Kefu Xue** (937-775-5037, kefu.xue@wright.edu, 313 Russ Center), Associate Professor, Ph.D., Pennsylvania State University, 1987. Research interests include: digital image processing, computer vision and special purpose architecture for signal processing.

- **Xiaodong (Frank) Zhang** (937-775-4463, xiaodong.zhang@wright.edu, 335 Russ Center), Associate Professor, Ph.D., University of Cincinnati, 2001. Research interests include: Fault diagnosis and prognosis, fault-tolerant control and contingency management, intelligent control and adaptive systems, distributed and cooperative control, verification and validation of complex control systems.

- **Yan Zhuang** (937-775-4556, yan.zhuang@wright.edu, 421 Russ Center), Associate Professor, Ph.D., Johannes Kepler University, Linz, Austria, 2000. Research interests include: RF and microwave technology, magnetic materials, nano-composite
materials, high speed Si-based electronics, MEMs/NEMs, micro aerial vehicle and sensors.

3 M.S.E.E.

3.1 Admission

3.1.1 Application Process for US Citizens and US Permanent Residents

Applications for admission are to be submitted to The Graduate School which has the responsibility for administering graduate programs at Wright State University.

3.1.2 Requirements

A student may be admitted to the program with regular status if they hold a Bachelor of Science in Electrical Engineering or related fields from an ABET-accredited (Washington Accord) institution of higher education with a minimum electrical engineering GPA of 2.9 on a 4.0 scale.

Students with GPA below 2.9 may be admitted conditionally with a minimum undergraduate GPA of 2.7. The condition to attain regular status is usually the achievement of a GPA of 3.0 or better in the first 2 graduate courses (or with cumulative GPA of 3.0 at any point thereafter) as specified by a department advisor.

Applicants with a non-EE bachelors or master's degree may be required to demonstrate proficiency with prerequisite material listed below.

<table>
<thead>
<tr>
<th>Prerequisite Material</th>
<th>Equivalent WSU Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Circuits</td>
<td>EE 2010</td>
</tr>
<tr>
<td>Linear Systems</td>
<td>EE 3210, EE 4000*</td>
</tr>
<tr>
<td>Probabilities</td>
<td>EE 3260</td>
</tr>
<tr>
<td>Electronics</td>
<td>EE 3310</td>
</tr>
<tr>
<td>Electromagnetics</td>
<td>EE 3450</td>
</tr>
<tr>
<td>Control Systems</td>
<td>EE 4130*</td>
</tr>
<tr>
<td>Digital Communications</td>
<td>EE 4210*</td>
</tr>
<tr>
<td>Mathematics: Calculus, Differential Equations and Linear Algebra</td>
<td></td>
</tr>
</tbody>
</table>

*The EE 4xxx courses listed above may be taken as part of MS Program of Study at the 6000-level by advisor approval.

3.1.3 Application Process for International Applicants

International students submit application materials to the Wright State International Gateway (WSIG). International students should contact WSIG regarding application deadlines, Test of English as Foreign Language (TOEFL), Learning English for Academic
and Professional Purposes (LEAP), financial statements and other requirements.

International applicants with a BS degree in EE or related fields from a non-ABET accredited (Washington Accord) institution will be granted regular admission status with a minimum GPA of 3.3 on a 4.0 scale. A student may be admitted to the program with Admitted Under Advisement (AUA) status if the undergraduate cumulative GPA is less than 3.3 but at least 2.9. AUA students securing a GPA of 3.0 at the end of the first semester (or with cumulative GPA of 3.0 at any point thereafter) will be given the option to join the Regular program. AUA students will be under mandatory academic advising until they attain Regular status.

3.1.4 GRE Requirement

GRE score is not required for students who have graduated from an ABET-accredited (Washington Accord) institution. Non-ABET accredited (Washington Accord) program graduates should have a combined (verbal and quantitative) GRE score of 300 (1000 under the old system) for admission to the MSEE program.

3.1.5 Academic Deficiency

A student with an undergraduate academic deficiency may petition for admission after demonstrating the ability to perform well in graduate courses taken in a non-degree status.

3.1.6 Waivers

Waivers for any of the above requirements may be granted at the discretion of the EE Department's Director of Graduate Studies for exceptional students.

3.2 Degree Requirements

The general requirements of The Graduate School for a Master of Science Degree are set forth in the Graduate Catalog. Specific departmental requirements for the Master of Science in Electrical Engineering include:

1. Submit a Program of Study, conforming to the following requirements, with approval by the Graduate Program Director by the end of the first semester.
2. Complete at least 30 graduate credit hours (WSU courses numbered 6000 or above) with the following restrictions:
 a. At least 24 of the 30 graduate credit hours must be EE prefix courses.
 b. At least 18 of the 30 graduate credit hours must be numbered 7000 or above.
 c. At least 12 of the 18 7000 level credit hours must be EE prefix courses.
3. A successfully advised and defended Thesis may count at most 9 graduate credit hours (through “P” grades in EE 7990) toward graduation for thesis-option students.
4. At most 2 credit hours of “Independent Study” (through “P” grades in EE 7900) may be counted toward graduation.
5. At most 8 hours of Graduate-Program-Director-approved graduate transfer credit may be applied toward graduation.
6. Elective graduate courses counting toward graduation must be selected from a list
available from the EE department.

7. No more than 6 graduate credit hours of C grades may be counted toward graduation. Of the maximum total of 6 graduate credit hours of C, no more than 2 of these may correspond to Laboratory courses.

8. A minimum GPA of 3.0 is required for graduation.

9. Each MSEE student must complete at least three (3) courses from at least one of the major-area course lists below with at least two of these at the 7xxx level.

<table>
<thead>
<tr>
<th>VLSI & Electronics</th>
<th>Signal Processing & Controls</th>
<th>RF & Communications</th>
<th>Microwave</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 6440</td>
<td>EE 6120</td>
<td>EE 6000</td>
<td>EE 6100</td>
</tr>
<tr>
<td>EE 6540</td>
<td>EE 6130</td>
<td>EE 6210</td>
<td>EE 6400</td>
</tr>
<tr>
<td>EE 6620</td>
<td>EE 6170</td>
<td>EE 6360</td>
<td>EE 6420</td>
</tr>
<tr>
<td>EE 7410</td>
<td>EE 6190</td>
<td>EE 6730</td>
<td>EE 6460</td>
</tr>
<tr>
<td>EE 7420</td>
<td>EE 6560</td>
<td>EE 6750</td>
<td>EE 6470</td>
</tr>
<tr>
<td>EE 7430</td>
<td>EE 6600</td>
<td>EE 6840</td>
<td>EE 6700</td>
</tr>
<tr>
<td>EE 7440</td>
<td>EE 7020</td>
<td>EE 7010</td>
<td>EE 7080</td>
</tr>
<tr>
<td>EE 7520</td>
<td>EE 7200</td>
<td>EE 7150</td>
<td>EE 7430</td>
</tr>
<tr>
<td>EE 7530</td>
<td>EE 7270</td>
<td>EE 7160</td>
<td>EE 7440</td>
</tr>
<tr>
<td>EE 7540</td>
<td>EE 7280</td>
<td>EE 7170</td>
<td>EE 7460</td>
</tr>
<tr>
<td>EE 7550</td>
<td>EE 7560</td>
<td>EE 7330</td>
<td>EE 7470</td>
</tr>
<tr>
<td>EE 7580</td>
<td>EE 7350</td>
<td>EE 7480</td>
<td></td>
</tr>
<tr>
<td>EE 7590</td>
<td>EE 7360</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Students who have received credit, with a grade of C or better, for 6000-level courses in a major-area course lists may use these to satisfy the major-area course requirement.

3.3 Graduation

Each student must submit an application to receive a master's degree. Application forms are found under Wings Express. Specific cutoff dates are published in the semester class schedule. Should the first graduation attempt be unsuccessful, students must re-apply for a degree on each successive attempt. Under extreme circumstances, a student may petition the Department for support of a late application for Graduation through the first week of the semester.
3.4 Course Numbering

Courses numbered 7000 and above are intended to be taken only by graduate students. Courses numbered 6000 and above are typically co-listed in the undergraduate catalog with a corresponding 4000 number and may be attended by graduate and undergraduate students. No course may be used to satisfy the credit-hour requirements of multiple degrees, except for satisfying the combined B.S./M.S. in Electrical Engineering degree program requirements. Graduate students should expect additional requirements when enrolled in a course a course offered to both graduate and undergraduate students.

3.5 Frequently Asked Questions

For complete details, please refer to the Wright State University Graduate Catalog.

Where may I find a graduate studies catalog? The Graduate School website.

What if I earn poor grades? You may either keep the grade or replace the grade. All students in graduate study programs are expected to maintain a minimum grade point average of 3.0. The grade of C is the minimum passing grade for graduate credit. A course taken for graduate credit in which a D is received may not be applied toward the requirements of a graduate degree.

How many credits may I transfer? Up to 8 graduate semester credits earned at a regionally accredited academic institution may be transferred to a student’s graduate academic record. Acceptance of these credits is subject to approval by the department's Graduate Program Director and The Graduate School.

How may I earn credit for independent study? Up to two semester hours of Special Problems (EE 7900) may be applied toward the degree. Independent study credits are graded on a pass/fail basis. A student desiring to perform independent study should complete an independent study contract form which may be obtained in the department's administrative office. That “contract” should define the work to be accomplished and must be approved by the faculty member and chair prior to registering for credit.

How many courses should I take? International graduate students and graduate students who receive graduate assistantships must maintain full-time student status, which requires registration for 6 or more credit hours per semester. A typical graduate student carries a load of 8-12 credit hours per semester to make consistent progress towards graduation in 3-4 semesters.

May I drop a course? The online academic calendar lists specific dates by which a course must be formally dropped to avoid earning a grade.

May I take coursework outside the Department of Electrical Engineering? The degree requirements state that at least 24 out of 30 credits must have an EE prefix. It follows that with advisor approval, a program of study may be devised to include graduate courses from other engineering departments.
4 Financial Support

4.1 Graduate Research Assistantships (GRAs)

Individual professors employ graduate students to assist them in fulfilling the requirements of research contracts or grants the professors have secured. Candidates are usually chosen based on skills demonstrated in Wright State courses. The graduate research assistant is expected to follow the thesis option for the master's degree. Students should discuss GRA opportunities with individual professors.

4.2 Graduate Teaching Assistantships (GTAs)

The terms of department supported GTA will be limited to four semesters (cumulatively) for each student. Fractional departmental GTA appointments can be awarded in conjunction with a GRA funded by the student’s advisor. The GTA/GRAs are required to follow the thesis option for the MSE degree.

4.3 Non-University Employment

Students desiring part-time work should contact the College of Computer Science and Engineering Brandeberry Career Development Center at 292 Joshi Research Center. International students must obtain approval for any off-campus coop work through the University Center for International Education (UCIE).

4.4 Hourly Employment

Many departments hire students on an hourly basis to accomplish varied tasks. The Career Services at E334 Student Union serves as a central posting agency for these opportunities. Interested persons should check the Career Services Wright Search bulletin board as well as inquire at individual department offices.