Ph.D. in Engineering

Focus Areas

Students conduct dissertation research in one of seven research focus areas. Focus areas draw on faculty resources throughout the college.

On this page:

Computational Design and Optimization

Using cutting-edge research in the application of computational methods for solving real-world problems, the Computational Design and Optimization focus area concentrates on the continuous design improvement of aircraft and automotive components for strength, performance, and reliability.

It also investigates and applies multidisciplinary design methodologies to solve problems, along with automated computer modeling and "what-if" design scenarios for cost analysis of complex new systems with ambitious performance requirements. Recent developments in this focus area include improved computer interfaces and manufacturing methods, along with automated tool design. Current research efforts include:

  • Design and optimization of high-temperature processes
  • Computational fluid dynamics for simultaneous design of steady aerodynamic, aeroacoustic, and aeroelastic performance
  • Multidisciplinary optimization of aerospace structures

Focus Area Chair: Dr. Mitch Wolff, Department of Mechanical and Materials Engineering


Controls and Robotics

Current research efforts in the controls and robotics focus area include discrete observer-controller design, efficient implementation of digital controllers using microprocessors for robotics and manufacturing, adaptive digital controllers for uncertain systems, and intelligent controllers with learning capability. Research is also being done to develop reliable and efficient computational schemes which interface with computer-aided control systems design packages.

In the area of robust control, efforts are being done to facilitate control system design which accounts for uncertainties between the real system and the system mathematical models. Fuzzy control is being applied to a number of applications in robotics, manufacturing, and medicine, and other research is being conducted on advanced prosthesis design using actively controlled, electromechanical control of single and multi-jointed prosthetics.

Highlights of current research projects include:

  • Intelligent control of unmanned vehicles (UAVs) and robots
  • Intelligent control of robotic manipulators
  • Design and development of obstacle avoidance methods for mobile robots

Focus Area Chair: Dr. Frank ZhangDepartment of Electrical Engineering


Electronics, Microwave, VLSI, and Nanotechnology

Research in power electronics includes high-frequency power conversion, dc-dc and resonant converters, electronic ballasts, radio transmitters, and semiconductor power devices. Research in the microwave area includes computational electromagnetics, MMICs, electronic packages, planar antennas for wireless, RF/mixed signal, and evanescent microwave microscopy. Research in VLSI is based on research demand targeted to a variety of nanotechnologies (CMOS, BiCMOS, SiGe, GaAs), digital and mixed-signal IC and SoC, VLSI testing, fault tolerance, FPGAs based systems, and analog IC for signal processing (high performance A/D and D/A converters, PLLs, RF circuits). Research in nanotechnology includes ferromagnetic materials for RF tunable devices, Si/SiGe for high-speed transistor, and porous silicon fuel cells for portable electronics.

Focus Area Chair: Dr. Henry Chen, Department of Electrical Engineering


Industrial and Human Systems

The Industrial and Human Systems research focus area contributes to societal needs by modeling large-scale industrial systems, developing methodologies for improving industrial systems, and investigating the fundamental nature of human interactions with complex systems. This knowledge is then applied to systems design and implementation. Within this context, the focus is on development and validation of system models with theoretical contributions and practical applications. Principles, methods, and tools from systems engineering, neurosciences, cognitive sciences, biomechanics, psychology, systems physiology, computation, statistics, and mathematics are used and developed toward this effort. Research results may be applied to human-machine interfaces, decision support systems, virtual environments, ergonomics, transportation, manufacturing, military, and medical systems. Current research projects include:

  • Design and implementation of human-centered decision support systems and user interfaces
  • Design, implementation, and application of interactive modeling and simulation architectures
  • Design, implemention, and evaluation of human-computer integrated systems for realistic situations

Focus Area Chair: Dr. Mary Fendley, Department of Biomedical, Industrial, and Human Factors Engineering


Materials and Nanotechnology

Performance requirements for engineering applications call for materials with specific sets of properties. The properties of a material depend upon its structure, composition, and processing history. Research in the focus area of Materials and Nanotechnology covers length scales from the nanometer range to microscopic and macroscopic ranges for aerospace, automotive, and other traditional applications, as well as emerging areas, such as nanotechnology, alternative energy, and biomaterials. Examples include:

  • Design and development of metallic, ceramic, and polymeric materials and their composites
  • Nanoscale characterization and processing
  • Energy-related materials and devices
  • Theoretical modeling and simulation
  • Interfacial phenomena including chemistry and mechanics
  • Natural and bio-geo inspired solids
  • Bio-medical materials

Focus Area Chair: Dr. Raghavan Srinivasan, Department of Mechanical and Materials Engineering


Medical and Biological Systems

The Medical and Biological Systems focus area explicitly recognizes the growing importance of medical and biological systems within the Wright State University research community. Interdisciplinary research in this field uses principles of engineering, science, and mathematics to solve problems in the medical community and healthcare industry that advance fundamental biomedical engineering knowledge and lead to innovative engineering design applications.

Examples of research projects include:

  • Development of new methods for bone mineral density evaluation to assess osteoporosis and other bone diseases
  • Assessment of bone microstructure
  • Biomechanical studies of implantable devices including total joint replacements (ankle, knee, hip, spine, shoulder, fusion devices)
  • Modeling, development, and testing of pneumatic muscles
  • Tissue engineering (skin, bone grafts, devices)
  • Modeling behavior of biomedical processes (bony in-growth)
  • Research into bio-nano-materials and coatings for various applications
  • Development and assessment of assistive technologies to aid persons with disabilities

Focus Area Chair: Dr. Philippe Sucosky, Department of Mechanical and Materials Engineering


Sensor Signal and Image Processing

Research in Sensor Signal and Image Processing focuses on holistic approaches to modeling, processing, extracting, and exploiting signals and inputs produced by a variety of sensors in widely diverse applications. Aggressive research programs span sensor phenomenology, signal models, processing and fusion techniques, performance analysis, and image degradation characterization with associated correction techniques. Recent projects have developed technologies in computer-aided non-invasive medical diagnosis and monitoring; commercial applications of speech and image recognition; and military and law enforcement techniques for tracking and identification of targets. Students working in this focus area embrace issues ranging from sensor physics to information utility and emerge with a unique appreciation for and capabilities in sensor system design and development. Current research projects include multisensor fusion and automatic target recognition.

Focus Area Chair: Dr. Brian Rigling, Department of Electrical Engineering


Take the Next Step

Finding the right college means finding the right fit. See all that the College of Engineering and Computer Science has to offer by visiting campus.